Approximation of Solutions of the Forced Duffing Equation with Nonlocal Discontinuous Type Integral Boundary Conditions

نویسندگان

  • Ahmed Alsaedi
  • A. ALSAEDI
چکیده

Integral boundary conditions for evolution problems have various applications in chemical engineering, thermoelasticity, underground water flow and population dynamics, see for example [16, 17, 24]. In fact, boundary value problems involving integral boundary conditions have received considerable attention, see for instance, [3, 10], [12]–[15], [18, 19, 26] and the references therein. In a recent reference [2], Ahmad, et. al. discussed the existence and uniqueness of the solutions of a boundary value problem with discontinuous type integral boundary conditions. The monotone iterative technique coupled with the method of upper and lower solutions [5, 8, 20, 23, 25] manifests itself as an effective and flexible mechanism that offers theoretical as well as constructive existence results in a closed set, generated by the lower and upper solutions. In general, the convergence of the sequence of approximate solutions given by the monotone iterative technique is at most linear [11, 21]. To obtain a sequence of approximate solutions converging quadratically, we use the method of quasilinearization (QSL) [9]. This method has been developed for a variety of problems [1, 4, 6, 7, 22]. In view of its diverse applications, this approach is quite an elegant and easier for application algorithms. To the best of our knowledge, the method of quasilinearization has not been developed for Duffing equation with nonlocal discontinuous type integral boundary conditions. In this paper, we apply a quasilinearization technique to obtain the analytic approximation of the solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions. In fact, we obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the problem at hand. The concept of nonlocal discontinuous integral

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order k k ≥ 2 for the sequence of iterates is also established. It is found that the w...

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

Nonresonant Excitation of the Forced Duffing Equation

We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...

متن کامل

Numerical ‎S‎olution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions‎

This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...

متن کامل

Nonlocal Analysis of Longitudinal Dynamic Behavior of Nanobars with Surface Energy Effect

Due to considerable stored energy in surfaces of nano-scales in comparison with the stored energy in their bulk, considering the surface energy is necessary for the analysis of various behaviors of nano-scales for more precise design and manufacturing. In this article, the longitudinal dynamic behavior of nanobars in the presence of the surface energy parameters is studied. To this end, the lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008